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Numerical calculation of internal wave motions 
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A finite-difference technique for the numerical calculation of two-dimensional 
stratified incompressible fluid flows is presented. Small density variations are not 
assumed, so that this method is generally applicable to a wide variety of problems. 
To illustrate this new technique a calculation has been made of the collapse of a 
uniformly mixed region in a linearly stratified fluid. In addition to giving 
excellent agreement with experimental data, the calculations also reveal the 
mechanism for an observed change in scaling behaviour. 

1. Introduction 
With the advent of high-speed computers it is now possible to perform numeri- 

cal calculations for quite complex hydrodynamic phenomena. In  this paper we 
report a method capable of computing internal wave motion for a great variety of 
physical situations. Briefly, the computer is programmed to solve the complete 
set of Navier-Stokes equations for an incompressible stratified fluid. The basic 
method is the Marker-and-Cell (MAC) method developed by Harlow and others 
(see Harlow & Welch 1965; Amsden & Harlow 1970), suitably changed and 
improved to suit the task at hand. The principal improvements from the original 
MAC approach lie in the variable-density and free-surface treatments. 

As an important application, as well as test, of the method, we have performed 
a numerical simulation of an experiment of Wu (1969) involving the collapse of a 
uniformly mixed region imbedded in a linearly stratified fluid. The agreement 
between theory and experiment is excellent. In  addition the calculation offers an 
explanation for a change in scaling behaviour observed by Wu. 

In  5 2 a brief discussion of the computation method is given, followed in § 3 by a 
description of the comparison between calculation and experiment. 

2. The computational method 
In  this section we briefly mention the numerical methods employed, giving 

details only where they have either been changed from or improved over pre- 
viously reported work. Our code SAPHIRE is two-dimensional and employs 
Cartesian geometry. The basic numerical technique used in SAPHIRE, for the 
integration of the Navier-Stokes equations, is the MAC FORTRAN code listed 
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in Amsden & Harlow (1970). This is an Eulerian finite-difference technique using 
massless marker particles to define the free-surface position. The difference 
equations are explicit, being first-order in time and second-order in space. 
Velocities are defined on the faces of a network of rectangular cells while pressures 
and densities are defined a t  cell centres. For completeness, we present here the 
momentum difference equations used in MAC : 

-1 . n+l - , p + I  +Pi,j i,i+l 

SY + Pi, j++Su 

Here u and v are the x and y components of the fluid velocity u, p is the density, 
p the viscosity and St the time increment. The subscripts i and j  refer to  the mesh 
points in the x and y directions respectively. Gravity is denoted by the vector g, 
and the superscript n + I refers to the (n + 1)th time step. The label n for the time 
step (cycle) is omitted except on the pressure terms. It should be noted that all 
quantities on the right-ha,nd side of (2.1) and (2.3) except pressures, are evaluated 
at  the time level n. 

It is necessary to have a difference equation for the density changes if one wishes 
to compute the flow of a stratified fluid. Previous numerical calculations by Wessel 
(1969) for incompressible stratified flow have employed the Boussinesq approxi- 
mation, but here we compute all the effects of density changes directly. The 
equation of continuity is 

ap/at+V.(pu) = 0, (2.3) 

while the incompressibility condition is 

Dp/Dt = 0 = appt  + u . V p  = 0. (2.4) 
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It has been assumed that the diffusion of the solute producing the stratification 
we wish to study is insignificant on the time scales of interest, otherwise diffusion 
terms are needed in the right-hand sides of (2.3) and (2.4). 

One could, in principle, use either (2.3) or (2.4) to advance the density field. We 
prefer the former because it exactly satisfies mass conservation when written in 
finite-difference form. The condition for incompressibility is satisfied by requiring 
that V . u = 0. This is accomplished, as in the original MBC method, by calculating 
the pressure needed at time step n + 1, for use in (2.1) and (2.2), from the require- 
ment that V. u = 0 at step n + 1 for each cell in the mesh. The resulting equation 
for the pressures is 

where 
3 and 5 are defined by (2.1), (2.2) and 

is just the finite-difference form of V . i3 (given below) and the velocities 

Equation (2.5) is solved for ptz1 by a relaxation technique. 

n to cycle n + 1 is 
From (2.3), the expression to be used for advancing the density field from cycle 

6t 
2sx = pi,j-- (Pi+l,j U?$i,j - Pi-l,j 

The quantity Q j  is the finite-difference form of V .u: 

The term proportional to Di,i is kept in (2.6) because .Qi is never exactly zero 
(in the numerical solution) and its retention is important for mass conservation. 

If (2.6) is used with the p values on the right-hand side evaluated a t  time step n, 
a classical rapidly growing numerical instability will result. This instability is 
eliminated by requiring an iteration on the densities within each time step. Thus, 
a cycle of time advancement consists of &st making a tentative guess for the new 
p values using equation (2.6) with n-level velocities and densitieseverywhere on 
the right-hand side. Then a new pressure field that makes (V . u)"+l equal to zero 
is obtained by iteration. Finally, the densities are recalculated using equation 
(2.6) with the tentative new p values and the new velocities. If any cell density 
changes by more than some predetermined small percentage the sequence is 
repeated, calculating first a pressure field then new velocities, and again new 
densities. This iteration technique is extremely fast, requiring only very rarely 
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more than one extra pass through (2.6). No instabilityproblems have been seen to 
arise in the use of this technique. 

There is one subtle point regarding the numerical stability of the above finite- 
difference equations that needs further explanation. As was mentioned in con- 
nexion with the density equation (2.6), the use of density values at  time level n in 
the convection terms leads to an instability. This instability is avoided by recal- 
culating (2.6) a t  least once each time step, with the tentatively advanced values of 
density replacing the values previously at level n. Similarly, the use of values of 
quantities a t  time level n in the momentum convection terms in (2.1) and (2.2) 
makes these equations also unstable. Stability could be obtained, as it is in the 
density equation, by recalculating the velocities from (2.1) and (2.2) using the 
most updated values of velocities in the convection terms; however, this has not 
been attempted. Instead, stability is achieved, as in the original MAC method, by 
increasing the value of the viscosity. Increasing the viscosity compensates for a 
particularly undesirable kind of finite-difference truncation error, which gives a 
negative or anti-diffusion effect. If left unchecked these errors can enhance 
fluctuations to the point where they completely dominate a solution. To have a 
stable solution it has been shown (Hirt 1968) that the value of ,u must exceed 
-$St ?I& and &Yx2U&, where U,, is the maximum fluid speed and lJ& is the maxi- 
mum absolute value of aulax. 

The value of p necessary to get a stable numerical solution is often much larger 
than the real value ofp for the fluid under study. In  this situation it is necessary to 
exercise some caution if meaningful calculations are to be made. Two cases can be 
distinguished, according to whether the detailed effects of viscosity are of interest 
or not. 

In  cases where viscosity plays a relatively minor role, such as in the problem 
described in the next section, the effects of viscosity are to be minimized. If, in 
these cases, ,u is chosen just large enough for stability and no larger, and if St and 
Sx values are chosen well within the characteristic time and space scales of the 
problem, then the influence of ,u is not expected to be important. 

On the other hand, in cases where the detailed effects of viscosity are important, 
as in a study of transition to turbulence, then the real value of p must be used and 
the competing finite-difference errors must be made small relative to p. In  these 
casesitcanbe argued (seeHirt &Cook 1972), that themaximumReynolds number 
accurately resolved by a mesh is less than N2, where N is the number of mesh 
intervals spanning a characteristic problem dimension. 

The program also includes a free-surface treatment that gives very smooth and 
accurate results. This treatment, which is considerably better than that used in 
the original MAC method, will not be discussed here as it is well described in the 
paper of Nichols & Hirt (197 I). 

It should be mentioned that values required at other than principal grid points 
are generally obtained by means of simple averages. The only exception to the 
above rule is in the convection terms, where we put 

and 
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Also, while the program allows for a variable viscosity, this feature was not used 
in the sample calculation which follows. Rigid-wall boundary conditions are 
considered to be either ‘ free-slip’ (symmetry) or ‘no-slip ’. For the calculation in 
the next section the former boundary conditions were used. 

3. Comparison of theory and experiment 
Wu (1969), in a very nicetankexperiment,measured the collapseof a uniformly 

mixed region in a linearly stratified fluid, and observed the internal wave pattern 
that resulted. In  this section we discuss a numerical simulation of one of Wu’s 
experimental configurations. 

The experiment involved a volume of fluid confined in a rigid tank approxi- 
mately 220cm long and 120cm high. The computing mesh covered the same 
region, cells having dimensions 6% = 5 ern and 6y = 4 em. The time step, chosen for 
numerical stability and accuracy, was 6t = 0.1 s with p = 0.8g cm-ls-l. The 
initial radius (r,,) of the uniformly mixed circular region was taken to be 15.6 em. 
The stratification was linear, and given by a = ( - l/po) = 0.001 cm-l 
(po = 1 g/c.c.), corresponding closely to one of the experimental values 
(0.001 1 cm-l). Both the experiment and the calculation were performed for only 
half of the problem for reasons of symmetry, see figure l (a) .  

Since earlier calculations showed that a free surface did not significantly affect 
the internal wave dynamics we chose to ignore that option for the purpose of this 
paper and used a rigid upper boundary. Actually a simple argument shows that 
the change in free-surface elevation would be much less than 1 % of the initial 
radius of the uniform-density core. 

A numerical simulation of a problem similar to that described above was 
attempted by Wessel (1969), also using a variant of the MAC method, and the 
Boussinesq approximation. However, his difference equations are not consistent 
and a highly questionable set of boundary conditions was used in their solution. 
He also used an initially square uniform-density region rather than the circular 
one used in the experiments. Although he claims agreement to within 15 yo of the 
experimental data, his calculations must be regarded with suspicion without 
further supporting evidence. 

The results of our calculations generally follow the observations of Wu, except 
that we do not follow the final collapse period owing to limitations of the numeri- 
cal resolution that we chose. Also, the calculation does not show ‘the wedge’ that 
occurs a t  the tip of the expanding core before the final collapse stage for the same 
reason. We do, however, calculate the enlarged head of the tip that occurs at 
t (ag) t  N 3 in the experiment. Some of the results of the calculation are shown in 
figures 1 (a)-(9). The horizontal dotted lines at t = 0 consist of massless Lagrangian 
particles and, as such, represent contours of constant density. These lines show 
the internal wave patterns in the same way as the layers of different coloured 
fluids used by Wu. The semicircular region half-way up the left boundary repre- 
sents the uniformly mixed region with a constant density equal to that of the 
ambient fluid at the midpoint. Thus, the uniform-density region has neutral 
buoyancy. 
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FIGUFLE 1. For legend see facing page. 
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FIGURE 1. Marker-particle configurations a t  non-dimensional times ( a )  0, ( b )  2.0, 
(c) 3.0, ( d )  4.0, ( e )  7.0, (f) 10.0, (9)  15.0. 
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FIGURE 2. Comparison between theory and experiment for the horizontal length r/ro of the 
collapse region versus time. -, experiment; x , calculated points. 

From the plots of the Lagrangian particles one can construct a curve of maxi- 
mum horizontal radius versus time. Such a curve is shown in figure 2 compared 
with a similar curve measured by Wu. While our results are slightly, but con- 
sistently, lower the agreement is within the experimental error up to when the 
vertical thickness of the collapsing region is comparable to a cell width. Once the 
core has collapsed to a thickness comparable to a cell size, the numerical solution 
is no longer accurate, which accounts for the slowdown of the calculated collapse 
after approximately t(ag)* = 15. 

Figures 3 (a)-(d) show plots of the velocity field suitably scaled for the graphs. 
Each line representing a velocity begins a t  a cell centre and thus it is easy to 
ascertain the velocity direction from the plot. It is interesting to note that Wu 
observed a change in scaling for core radius versus time depending on whether 
t(ag)* was less than or greater than approximately 4. This change in scaling can be 
better seen by plotting (r - ro)/ro with respect to t(ag)&, as in figure 4. The radius 
versus time curve is nicely approximated by three straight-line segments, with 
transitions between the different segments occurring near t(ag)* = 2-75 and 
t(ag)$ = 6.0. A close look at  the computed velocity fields in figures 3(a)-(d) reveals 
the origin of these transitions. While only a single eddy pair is observed during the 
initial stages of collapse, a second pair is clearly seen to be developing by t(ag)* = 

3.0 and a third pair by t(ag)* = 7-0. Thus, the numerical results indicate that the 
flow remains self-similar as long as there is a particular distribution of eddies. 
However, with the addition of each new eddy pair a different self-similar scaling is 
required. 

Although Wu did not observe a second transition in scaling behaviour this may 
be due to the fact that his reported results are the average obtained for a set of 
experiments covering more than an order-of-magnitude range in a. He did notice, 
however, that his data did follow a linear trend at  early times when plotted with 
respect to ( r  - ro)/ro as in figure 4. 

The numerical results also indicate the mechanism that changes the shape of 
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FIGURE 3. Velocity vector plots at non-dimensional times 
(a )  1.0, ( b )  5.0, (c) 7.0, (d) 12.0. 
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4. Plot of horizontal length (r - r,)/r, versus time showing linear 
Solid line segments approximate the numerical results, shown as 

growth 
crosses. 

phases. 

the tip of the expanding core. At times before the scaling transition at t(olg)* = 4, 
the tip is noticeably enlarged. After t(ag)i = 4 the enlargment disappears and the 
tip narrows into a sharp triangular point. This transition in shape results from a 
shift in the primary-eddy location. At early times the tip is to the right of the 
primary eddy and is therefore in a region of diverging flow, which causes it to 
expand. With the formation of secondary eddies the primary eddy is forced to 
the right of the tip, putting it in a region of converging flow. This causes the tip 
to narrow down, but a sharp point does not develop in the numerical solution 
because of insufficient resolution. 

From the particle plots one can also observe the internal wave pattern, which 
agreesin structure with theone seen by Wu. More quantitatively, one canmeasure 
the angle between a line through the crests or troughs of the internal waves and a 
horizontal line through the top or bottom of the initial core region. A plot of this 
angle against the abscissa of the apex of the angle is shown in figure 5 compared 
with a curve representing the average of Wu’s data. The agreement is seen to be 
quite satisfactory. The calculations, like the experimental data, show that the 
internal waves decay rapidly as they propagate away from the core centre. A film 
made from the computer plots clearly demonstrates the relationship between the 
phase and group velocities of the internal waves. 

It should be mentioned that the wiggles that appear on the boundary of the 
collapsing region are of a numerical origin, probably related to the averaging of 
core and ambient densities in computational cells containing the core boundary. 
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FIGURE 5. Comparison between theory and experiment of s, the abscissa of the intersection 
point of a line drawn through crests or troughs with a horizontal line through the top o r  
bottom of the initial uniform density region, versus 8. -, average of the experimental 
points: x , from calculation. The calculated points lie well within the experimental scatter. 

The calculations referred to above were made on the CDC7600 a t  the Los 
Alamos Scientific Laboratory. The time required for a single run was 5min, 
which included sufficient plots for a film. Clearly, a much larger problem is 
easily feasible. 

4. Conclusions 
This numerical calculation of the collapse of a uniformly mixed region in a 

linearly stratified fluid agrees very well with available experimental data. As no 
special procedures were resorted to in obtaining this agreement, it  may be con- 
cluded that the numerical solution method discussed in § 2 is a highly satisfactory 
one. With this in mind, it would be straightforward to study a host of related 
problems. For example, it  would be possible to investigate the internal wave 
patterns produced when the density stratification is changed from linear to 
exponential, in which case the Brunt-Vaisala frequency would be constant, or to 
vary the initial uniform-density core from cylindrical to elliptical, or, by com- 
puting the entire left and right sides of the core, to include the effects of a variable 
horizontal current on the collapse structure. More complex phenomena can also 
be attacked with the SAPHIRE code, including situations where there are inter- 
actions between surface waves and internal waves, or where there are rectangular 
obstacles imbedded in the flow as was described in the original MAC method. 

The authors wish to thank one referee for his stability analysis of the numerical 
methodpresentedin this paper, and a secondreferee for severalvaluable criticisms. 
Thisworkwas supported in part by Science Applications, Inc., La Jolla, California, 
and in part by the United States Atomic Energy Commission. 
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